Interspecific and intraspecific gene variability in a 1-Mb region containing the highest density of NBS-LRR genes found in the melon genome

16Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Plant NBS-LRR -resistance genes tend to be found in clusters, which have been shown to be hot spots of genome variability. In melon, half of the 81 predicted NBS-LRR genes group in nine clusters, and a 1Mb region on linkage group V contains the highest density of R-genes and presence/absence gene polymorphisms found in the melon genome. This region is known to contain the locus of Vat, an agronomically important gene that confers resistance to aphids. However, the presence of duplications makes the sequencing and annotation of R-gene clusters difficult, usually resulting in multi-gapped sequences with higher than average errors. Results: A 1-Mb sequence that contains the largest NBS-LRR gene cluster found in melon was improved using a strategy that combines Illumina paired-end mapping and PCR-based gap closing. Unknown sequence was decreased by 70% while about 3,000 SNPs and small indels were corrected. As a result, the annotations of 18 of a total of 23 NBS-LRR genes found in this region were modified, including additional coding sequences, amino acid changes, correction of splicing boundaries, or fussion of ORFs in common transcription units. A phylogeny analysis of the R-genes and their comparison with syntenic sequences in other cucurbits point to a pattern of local gene amplifications since the diversification of cucurbits from other families, and through speciation within the family. A candidate Vat gene is proposed based on the sequence similarity between a reported Vat gene from a Korean melon cultivar and a sequence fragment previously absent in the unrefined sequence. Conclusions: A sequence refinement strategy allowed substantial improvement of a 1Mb fragment of the melon genome and the re-annotation of the largest cluster of NBS-LRR gene homologues found in melon. Analysis of the cluster revealed that resistance genes have been produced by sequence duplication in adjacent genome locations since the divergence of cucurbits from other close families, and through the process of speciation within the family a candidate Vat gene was also identified using sequence previously unavailable, which demonstrates the advantages of genome assembly refinements when analyzing complex regions such as those containing clusters of highly similar genes.

Cite

CITATION STYLE

APA

González, V. M., Aventín, N., Centeno, E., & Puigdomènech, P. (2014). Interspecific and intraspecific gene variability in a 1-Mb region containing the highest density of NBS-LRR genes found in the melon genome. BMC Genomics, 15(1). https://doi.org/10.1186/1471-2164-15-1131

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free