Roles of telomerase reverse transcriptase N-terminal domain in assembly and activity of Tetrahymena telomerase holoenzyme

24Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Telomerase extends chromosome ends by the addition of single-stranded telomeric repeats. To support processive repeat synthesis, it has been proposed that coordination occurs between DNA interactions with the telomerase RNA template, the active site in the telomerase reverse transcriptase (TERT) core, a TERT N-terminal (TEN) domain, and additional subunits of the telomerase holoenzyme required for telomere elongation in vivo. The roles of TEN domain surface residues in primer binding and product elongation have been studied largely using assays of minimal recombinant telomerase enzymes, which lack holoenzyme subunits that properly fold and conformationally stabilize the ribonucleoprotein and/or control its association with telomere substrates in vivo. Here, we use Tetrahymena telomerase holoenzyme reconstitution in vitro to assess TEN domain sequence requirements in the physiological enzyme context. We find that TEN domain sequence substitutions in the Tetrahymena telomerase holoenzyme influence synthesis initiation and elongation rate but not processivity. Functional and direct physical interaction assays pinpoint a conserved TEN domain surface required for holoenzyme subunit association and for high repeat addition processivity. Our results add to the understanding of telomerase holoenzyme architecture and TERT domain functions with direct implications for the unique mechanism of single-stranded repeat synthesis. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Eckert, B., & Collins, K. (2012). Roles of telomerase reverse transcriptase N-terminal domain in assembly and activity of Tetrahymena telomerase holoenzyme. Journal of Biological Chemistry, 287(16), 12805–12814. https://doi.org/10.1074/jbc.M112.339853

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free