Design and evaluation of a surface electromyography-controlled steering assistance interface

N/ACitations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

Millions of drivers could experience shoulder muscle overload when rapidly rotating steering wheels and reduced steering ability at increased steering wheel angles. In order to address these issues for drivers with disability, surface electromyography (sEMG) sensors measuring biceps brachii muscle activity were incorporated into a steering assistance system for remote steering wheel rotation. The path-following accuracy of the sEMG interface with respect to a game steering wheel was evaluated through driving simulator trials. Human participants executed U-turns with differing radii of curvature. For a radius of curvature equal to the minimum vehicle turning radius of 3.6 m, the sEMG interface had significantly greater accuracy than the game steering wheel, with intertrial median lateral errors of 0.5 m and 1.2 m, respectively. For a U-turn with a radius of 7.2 m, the sEMG interface and game steering wheel were comparable in accuracy, with respective intertrial median lateral errors of 1.6 m and 1.4 m. The findings of this study could be utilized to realize accurate sEMG-controlled automobile steering for persons with disability.

Cite

CITATION STYLE

APA

Nacpil, E. J. C., Wang, Z., Zheng, R., Kaizuka, T., & Nakano, K. (2019). Design and evaluation of a surface electromyography-controlled steering assistance interface. Sensors (Switzerland), 19(6). https://doi.org/10.3390/s19061308

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free