Interactive effects of dissolved nitrogen, phosphorus and litter chemistry on stream fungal decomposers

17Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The enrichment of ecosystems by nutrients such as nitrogen (N) and phosphorus (P) has important ecological consequences. These include effects on plant litter decomposition in forest soils and forested headwater streams, where fungi play a pivotal role. However, our understanding of nutrient relationships on fungal communities associated with decomposing litter remains surprisingly incomplete. We conducted a fully factorial microcosm experiment with known communities of fungal decomposers from streams to assess the importance of dissolved N and P supply, as well as the atomic nutrient ratio (N:P), on fungal community succession, diversity, biomass and reproduction on three leaf-litter species differing in nutrient and lignin concentrations. Fungal biomass accrual and spore production were strongly controlled by external N supply, whereas P supply was much less important. The magnitude of these effects was mediated by litter quality, with stronger effects of dissolved N and P on lignin-poor and high N:P litter. N supply also influenced fungal diversity and species composition, acting as a pacemaker of community succession. Collectively, our data indicate that N was in much greater demand than predicted by standard stoichiometric models. The most parsimonious explanation for this deviation relates to the need of litter fungi to invest large amounts of N into degradative exoenzymes.

Cite

CITATION STYLE

APA

Jabiol, J., Cornut, J., Tlili, A., & Gessner, M. O. (2018). Interactive effects of dissolved nitrogen, phosphorus and litter chemistry on stream fungal decomposers. FEMS Microbiology Ecology, 94(10). https://doi.org/10.1093/femsec/fiy151

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free