Genetic Analysis of the Role of the PI3K-Akt Pathway in Lipopolysaccharide-Induced Cytokine and Tissue Factor Gene Expression in Monocytes/Macrophages

  • Luyendyk J
  • Schabbauer G
  • Tencati M
  • et al.
220Citations
Citations of this article
115Readers
Mendeley users who have this article in their library.

Abstract

LPS stimulation of monocytes/macrophages induces the expression of genes encoding proinflammatory cytokines and the procoagulant protein, tissue factor. Induction of these genes is mediated by various signaling pathways, including mitogen-activated protein kinases, and several transcription factors, including Egr-1, AP-1, ATF-2, and NF-κB. We used a genetic approach to determine the role of the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway in the regulation of LPS signaling and gene expression in isolated macrophages and in mice. The PI3K-Akt pathway is negatively regulated by the phosphatase and tensin homologue (PTEN). We used peritoneal exudate cells from Pik3r1-deficient mice, which lack the p85α regulatory subunit of PI3K and have reduced PI3K activity, and peritoneal macrophages from PTENflox/flox/LysMCre mice (PTEN−/−), which have increased Akt activity. Analysis of LPS signaling in Pik3r1−/− and PTEN−/− cells indicated that the PI3K-Akt pathway inhibited activation of the ERK1/2, JNK1/2, and p38 mitogen-activated protein kinases and reduced the levels of nuclear Egr-1 protein and phosphorylated ATF-2. Modulating the PI3K-Akt pathway did not affect LPS-induced degradation of IκBα or NF-κB nuclear translocation. LPS induction of TNF-α, IL-6, and tissue factor gene expression was increased in Pik3r1−/− peritoneal exudate cells and decreased in PTEN−/− peritoneal macrophages compared with wild-type (WT) cells. Furthermore, LPS-induced inflammation and coagulation were enhanced in WT mice containing Pik3r1−/− bone marrow compared with WT mice containing WT bone marrow and in mice lacking the p85α subunit in all cells. Taken together, our results indicate that the PI3K-Akt pathway negatively regulates LPS signaling and gene expression in monocytes/macrophages.

Cite

CITATION STYLE

APA

Luyendyk, J. P., Schabbauer, G. A., Tencati, M., Holscher, T., Pawlinski, R., & Mackman, N. (2008). Genetic Analysis of the Role of the PI3K-Akt Pathway in Lipopolysaccharide-Induced Cytokine and Tissue Factor Gene Expression in Monocytes/Macrophages. The Journal of Immunology, 180(6), 4218–4226. https://doi.org/10.4049/jimmunol.180.6.4218

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free