Expression of novel acidic lipase from Micrococcus luteus in Pichia pastoris and its application in transesterification

9Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Lipases are promising biocatalysts for industrial applications and attract attention to be explored. A novel acidic lipase has been isolated from the lipolytic bacteria Micrococcus luteus EMP48-D (LipEMP48-D) screened from tempeh. The lipase gene had previously been overexpressed in Escherichia coli BL21, but the expression level obtained was relatively low. Here, to improve the expression level, the lipase gene was cloned to Pichia pastoris. We eliminated the native signal sequence of M. luteus and replaced it with α-mating factor (α-MF) signal sequence. We also optimized and synthesized the lipase gene based on codon preference in P. pastoris. Results: LipEMP48-D lipase was expressed as an extracellular protein. Codon optimization has been conducted for 20 codons, with the codon adaption index reaching 0.995. The highest extracellular lipase activity obtained reached 145.4 ± 4.8 U/mg under AOX1 promoter in P. pastoris KM71 strain, which was 9.7-fold higher than the previous activity in E. coli. LipEMP48-D showed the highest specific activity at pH 5.0 and stable within the pH range 3.0–5.0 at 40 °C. LipEMP48-D also has the capability of hydrolyzing various long-chain triglycerides, particularly olive oil (100%) followed by sunflower oil (88.5%). LipEMP48-D exhibited high tolerance for various polar organic solvents with low log P, such as isopropanol (115.7%) and butanol (114.6%). The metal ions (Na+, K+, Ca2+, Mg2+, Mn+) decreased enzyme activity up to 43.1%, while Fe2+ increased relative activity of enzymes up to 200%. The conversion of free fatty acid (FFA) into fatty acid methyl ester (FAME) was low around 2.95%. Conclusions: This study was the first to report overexpression of Micrococcus lipase in yeast. The extracellular expression of this acidic lipase could be potential for biocatalyst in industrial fields, especially organic synthesis, food industry, and production of biodiesel.

Cite

CITATION STYLE

APA

Adina, S. R., Suwanto, A., Meryandini, A., & Puspitasari, E. (2021). Expression of novel acidic lipase from Micrococcus luteus in Pichia pastoris and its application in transesterification. Journal of Genetic Engineering and Biotechnology, 19(1). https://doi.org/10.1186/s43141-021-00155-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free