The 14-3-3 proteins play a central role in the regulation of cell growth, cycling, and apoptosis by modulating the functional activities of key signaling proteins. Through binding to a phosphoserine motif, 14-3-3 alters target proteins activities by sequestering them, relocalizing them, conformationally altering their functional activity, or by promoting interaction with other proteins. These functions of 14-3-3 are facilitated by, if not dependent on, its dimeric structure. We now show that the dimeric status of 14-3-3 is regulated by site-specific serine phosphorylation. We found that a sphingosine-dependent kinase phosphorylates 14-3-3 in vitro and in vivo on a serine residue (Ser58) located within the dimer interface. Furthermore, by developing an antibody that specifically recognizes 14-3-3ζ phosphorylated on Ser58 and employing native-PAGE and cross-linking techniques, we found that 14-3-3 phosphorylated on Ser 58 is monomeric both in vitro and in vivo. Phosphorylated 14-3-3 was detected solely as a monomer, indicating that phosphorylation of a single monomer within a dimer is sufficient to disrupt the dimeric structure. Significantly, phosphorylation-induced monomerization did not prevent 14-3-3 binding to a phosphopeptide target. We propose that this regulated monomerization of 14-3-3 controls its ability to modulate the activity of target proteins and thus may have significant implications for 14-3-3 function and the regulation of many cellular processes.
CITATION STYLE
Woodcock, J. M., Murphy, J., Stomski, F. C., Berndt, M. C., & Lopez, A. F. (2003). The dimeric versus monomeric status of 14-3-3ζ is controlled by phosphorylation of Ser58 at the dimer interface. Journal of Biological Chemistry, 278(38), 36323–36327. https://doi.org/10.1074/jbc.M304689200
Mendeley helps you to discover research relevant for your work.