The multiplicity of massive stars

29Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

Abstract

Binaries are excellent astrophysical laboratories that provide us with direct measurements of fundamental stellar parameters. Compared to single isolated stars, multiplicity induces new processes, offering the opportunity to confront our understanding of a broad range of physics under the extreme conditions found in, and close to, astrophysical objects. In this contribution, we will discuss the parameter space occupied by massive binaries, and the observational means to investigate it. We will review the multiplicity fraction of OB stars within each regime, and in different astrophysical environments. In particular we will compare the O star spectroscopic binary fraction in nearby open clusters and we will show that the current data are adequately described by an homogeneous fraction of f ≈ 0.44. We will also summarize our current understanding of the observed parameter distributions of O+OB spectroscopic binaries. We will show that the period distribution is overabundant in short period binaries and that it can be described by a bi-modal Öpik law with a break point around P ≈ 10 d. The distribution of the mass-ratios shows no indication for a twin population of equal mass binaries and seems rather uniform in the range 0.2 ≤ q = M2/M1 ≤ 1.0. © International Astronomical Union 2011.

Cite

CITATION STYLE

APA

Sana, H., & Evans, C. J. (2011). The multiplicity of massive stars. In Proceedings of the International Astronomical Union (Vol. 6, pp. 474–485). Cambridge University Press. https://doi.org/10.1017/S1743921311011124

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free