We developed a simple high-performance liquid chromatography assay to monitor high-mannose glycans in monoclonal antibodies by monitoring terminal alpha-mannose as a surrogate marker. Analysis of glycan data of therapeutic monoclonal antibodies by 2-aminobenzamide assay showed a linear relationship between high mannose and terminal mannose of Fc glycans. Concanavalin A has a strong affinity to alpha-mannose in glycans of typical therapeutic monoclonal antibodies. To show that terminal mannose binds specifically to Concanavalin A column, exoglycosidase-treated monoclonal antibodies were serially blended with untreated monoclonal antibodies. Linear responses of terminal-mannose binding to the column and comparable data trending with high mannose levels by 2-aminobenzamide assay confirmed that terminal-mannose levels measured by the Concanavalin A column can be used as a surrogate for the prediction of high-mannose levels in monoclonal antibodies. The assay offers a simple, fast, and specific capability for the prediction of high-mannose content in samples compared with traditional glycan profiling by 2-aminobenzamide or mass spectrometry-based methods. When the Concanavalin A column was coupled with protein A column for purification of antibodies from cell culture samples in a fully automated two-dimensional analysis, high-mannose data could be relayed to the manufacturing team in less than 30 min, allowing near-real-time monitoring of high-mannose levels in the cell culture process.
CITATION STYLE
Kim, J., & Albarghouthi, M. (2022). Rapid monitoring of high-mannose glycans during cell culture process of therapeutic monoclonal antibodies using lectin affinity chromatography. Journal of Separation Science, 45(12), 1975–1983. https://doi.org/10.1002/jssc.202100903
Mendeley helps you to discover research relevant for your work.