We measured the optical reflectivity R(ω) for an underdoped (Ca0.935La0.065)10(Pt3As8)(Fe2As2)5 single crystal and obtained the optical conductivity σ1(ω) using the K-K transformation. The normal state σ1(ω) at 30 K is well fitted by a Drude-Lorentz model with two Drude components (ωp1 = 1446 cm-1 and ωp2 = 6322 cm-1) and seven Lorentz components. Relative reflectometry was used to accurately determine the temperature dependence of the superconducting gap at various temperatures below Tc. The results clearly show the opening of a superconducting gap with a weaker second gap structure; the magnitudes for the gaps are estimated from the generalized Mattis-Bardeen model to be Δ1 = 30 and Δ2 = 50 cm-1, respectively, at T = 8 K, which both decrease with increasing temperature. The temperature dependence of the gaps was not consistent with one-band BCS theory but was well described by a two-band (hence, two gap) BCS model with interband interactions. The temperature dependence of the superfluid density is flat at low temperatures, indicating an s-wave full-gap superconducting state.
CITATION STYLE
Seo, Y. I., Choi, W. J., Ahmad, D., Kimura, S. I., & Kwon, Y. S. (2018). Temperature dependence of the superconducting energy gaps in Ca9.35La0.65(Pt3As8)(Fe2As2)5 single crystal. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-24940-9
Mendeley helps you to discover research relevant for your work.