Footprint Reduction of Sensor Control Modules for Remote Portable Laboratories

0Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Following the automation of monitoring systems for pollution levels in cities or protected nature reserves, there comes a need to increase the autonomy of robotic vectors deployed in the field. Thus, it is important to consider the weight that these robots must hold in order to be able to carry out a comprehensive analysis of the environment. A balance must be struck in the size, weight, and complexity of the mobile laboratories used for measurement and the autonomy of robots, espe-cially given that current technology does not allow, in most cases, a completely autonomous battery charging cycle. Thus, in this paper, we consider a microcontroller-based architecture for a mobile laboratory control system that will be used for installation on both an aerial and an aquatic mobile vector. We found that such a system can be repurposed for several sensor types and configurations, thus being able to massively reduce the space allocated when compared to embedded widespread products.

Author supplied keywords

Cite

CITATION STYLE

APA

Arghirescu, S. A., Drăgan, M., & Fratu, O. (2022). Footprint Reduction of Sensor Control Modules for Remote Portable Laboratories. Sensors, 22(4). https://doi.org/10.3390/s22041483

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free