Abstrak— Klasifikasi jeruk lemon adalah disiplin bidang ilmu yang menggambarkan identifikasi jeruk berdasarkan sifatnya. Beberapa sifat dari jeruk lemon, diantaranya kulit terluar lemon kaya akan kelenjar minyak, kematangan ditandai dengan warna kulit kuning terang. Jeruk lemon yang berwarna hijau gelap, menandakan jeruk lemon tersebut belum matang dan kandungan air di dalamnya akan lebih sedikit. Pada penelitian ini kematangan diklasifikasikan menggunakan metode K-Nearest Neighbor. Hasilnya adalah klasifikasi kematangan dengan kadar air 90% jarak terdekat rata-rata sebesar 10,86 dengan akurasi 85%, sedangkan pada pengujian jeruk lemon dengan kematangan 80% diperoleh jarak terdekat 7,3 dengan akurasi 81%. Pada pengujian dengan kematngan dengan kadar air 70 persen diperoleh jarak rata-rata terdekat 19,4 dan akurasi 86,11%. Untuk jeruk lemon dengan kategori tidak matang dengan kadar air 50% diperoleh jarak terdekat sebesar 19,46 dan akurasi 88,9 % , sedangkan pada pengujian jeruk lemon mentah dengan kadar air 40% diperoleh jarak terdekat 16,19 dan akurasi 88,73 dan untuk pengujian jeruk lemon tidak matang dengan kadar air 30% diperoleh klasifikasi dengan jarak terdekat rata-rata sebesar 1,85 dan akuras 84,13%. Hal ini menunjukkan bahwa sistem klasifikasi dengan menggunakan metode K-NN cukup baik, indikatornya adalah jarak terdekat rata-rata yang dihasilkan antara citra uji dan citra training bernilai antara 1,85 sampai 19,46 dan akurasinya antara 81% sampai88,89 %.Kata kunci— Akurasi, Jeruk lemon, Klasifikasi, kedekatan, tetangga, uji.Abstract— Classification of lemon is the discipline of science that describes the identification of citrus by its character. Some characterof lemon, lemon outer shell is rich in oil glands, maturity is marked by bright yellowskin color, lemon which is dark green, indicates the immature lemon and water content in it will be less. In this study maturity are classified using K-Nearest Neighbor method. The result is a classification of maturity with 90% moisture content has shortest distance average of 10.86 with an accuracy of 85%, while in the testing of lemon with a maturity of 80% obtained the nearest distance of 7.3 with an accuracy of 81%. In maturity testing with a water content of 70 percent derived average approximate distance of 19.4 and 86.11% accuracy. For the lemon with the category of immature by moisture content of 50% obtained the nearest distance at 19.46 and accuracy of 88.9%, while in the testing of raw lemon with a moisture content of 40% obtained the nearest distance 16.19 and accuracy of 88.73 and for testing of immature lemon with a water content of 30% obtained classifications with the average nearest distance of 1.85 and accuracy of 84.13%. This indicates that the classification system using K-NN was very good, the indicator is the average nearest distance between the tested images and training image between 1.85 to 19.46 valuable and accuracy between 81% to 88.89%.Keywords— Accuracy, Lemon, classification,nearets, neighbors, test.
CITATION STYLE
Indrawati, I. (2018). Klasifikasi Kematangan Jeruk Lemon Menggunakan Metode K-Nearest Neighboard. Jurnal Infomedia, 2(2). https://doi.org/10.30811/.v2i2.514
Mendeley helps you to discover research relevant for your work.