Photoproduction of nitric oxide in seawater

12Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Nitric oxide (NO) is a short-lived intermediate of the oceanic nitrogen cycle. However, our knowledge about its production and consumption pathways in oceanic environments is rudimentary. In order to decipher the major factors affecting NO photochemical production, we irradiated several artificial seawater samples as well as 31 natural surface seawater samples in laboratory experiments. The seawater samples were collected during a cruise to the western tropical North Pacific Ocean (WTNP, a N S section from 36 to 2 N along 146 to 143 E with 6 and 12 stations, respectively, and a W E section from 137 to 161 E along the Equator with 13 stations) from November 2015 to January 2016. NO photoproduction rates from dissolved nitrite in artificial seawater showed increasing trends with decreasing pH, increasing temperature, and increasing salinity. In contrast, NO photoproduction rates (average: 0:50:21012 mol L1 s1) in the natural seawater samples from the WTNP did not show any correlations with pH, water temperature, salinity, or dissolved inorganic nitrite concentrations. The flux induced by NO photoproduction in the WTNP (average: 131012 molm2 s1) was significantly larger than the NO air sea flux density (average: 1:81012 molm2 s1), indicating a further NO loss process in the surface layer.

Cite

CITATION STYLE

APA

Tian, Y., Yang, G. P., Liu, C. Y., Li, P. F., Chen, H. T., & Bange, H. W. (2020). Photoproduction of nitric oxide in seawater. Ocean Science, 16(1), 135–148. https://doi.org/10.5194/os-16-135-2020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free