Rim 2/Hipa CACTA transposon display ; A new genetic marker technique in Oryza species

N/ACitations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Transposons constitute the major fractions of repetitive sequences in eukaryotes, and have been crucial in the shaping of current genomes. Transposons are generally divided into two classes according to the mechanism underlying their transposition: RNA intermediate class 1 and DNA intermediate class 2. CACTA is a class 2 transposon superfamily, which is found exclusively in plants. As some transposons, including the CACTA superfamily, are highly abundant in plant species, and their nucleotide sequences are highly conserved within a family, they can be utilized as genetic markers, using a slightly modified version of the conventional AFLP protocol. Rim2 /Hipa is a CACTA transposon family having 16 bp consensus TIR sequences to be present in high copy numbers in rice genome. This research was carried out in order to develop a Rim2/Hipa CACTA-AFLP or Rim2/Hipa CACTA-TD (transposon display, hereafter Rim2/Hipa-TD) protocol for the study of genetic markers in map construction and the study of genetic diversity in rice. Results: Rim2/Hipa-TD generated ample polymorphic profiles among the different rice accessions, and the amplification profiles were highly reproducible between different thermocyclers and Taq polymerases. These amplification profiles allowed for clear distinction between two different ecotypes, Japonica and Indica, of Oryza sativa. In the analysis of RIL populations, the Rim2/Hipa-TD markers were found to be segregated largely in a dominant manner, although in a few cases, non-parental bands were observed in the segregating populations. Upon linkage analysis, the Rim2/Hipa-TD markers were found to be distributed in the regions proximal to the centromeres of the chromosomes. The distribution of the Rim2/Hipa CACTA elements was surveyed in 15 different Oryza species via Rim2/Hipa-TD. While Rim2/Hipa-TD yielded ample amplification profiles between 100 to 700 bp in the AA diploid Oryza species, other species having BB, CC, EE, BBCC and CCDD, profiles demonstrated that most of the amplified fragments were larger than 400 bp, and that our methods were insufficient to clearly distinguish between these fragments. However, the overall amplification profiles between species in the Oryza genus were fully distinct. Phenetic relationships among the AA diploid Oryza species, as evidenced by the Rim2/Hipa-TD markers, were matched with their geographical distributions. Conclusion: The abundance of the Rim2/Hipa TIR sequences is very informative since the Rim2/Hipa-TD produced high polymorphic profiles with ample reproducibility within a species as well as between species in the Oryza genus. Therefore, Rim2/Hipa-TD markers can be useful in the development of high-density of genetic map around the centromeric regions. Rim2/Hipa-TD may also prove useful in evaluations of genetic variation and species relationships in the Oryza species. © 2005 Kwon et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Kwon, S. J., Park, K. C., Kim, J. H., Lee, J. K., & Kim, N. S. (2005). Rim 2/Hipa CACTA transposon display ; A new genetic marker technique in Oryza species. BMC Genetics, 6. https://doi.org/10.1186/1471-2156-6-15

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free