Design of Shared Internet of Things System for English Translation Teaching Using Deep Learning Text Classification

2Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The purpose is to adapt to the current social development and promote the English translation teaching reform. Based on the theories of deep learning (DL), text classification (TC), and the Internet of Things (IoT), this work analyzes the current situation of English translation teaching. Additionally, 100 text categories are selected from the English text corpus of Northwestern Polytechnic University as the research objects. The data are classified by the DL-based TC method and analyzed by introducing the simulated annealing algorithm. Finally, the storage and security performance of the shared IoT system are described. The results show that the proposed TC method can overcome the performance loss caused by the function extraction method, greatly reducing the training time and function space. The storage and security performance of the shared IoT system to encrypt English text will increase with the number of model iterations. Therefore, this work designs the English translation teaching-oriented shared IoT system using a DL-based TC. The finding plays an important role in subsequent English translation and enriching the theory of IoT.

Cite

CITATION STYLE

APA

He, L., Guo, J., & Lin, J. (2022). Design of Shared Internet of Things System for English Translation Teaching Using Deep Learning Text Classification. Wireless Communications and Mobile Computing, 2022. https://doi.org/10.1155/2022/3576419

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free