Acetylproteomics analyses reveal critical features of lysine-ε-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response

9Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Lysine-ε-acetylation (Kac) is a post-translational modification (PTM) that is critical for metabolic regulation and cell signaling in mammals. However, its prevalence and importance in plants remain to be determined. Employing high-resolution tandem mass spectrometry, we analyzed protein lysine acetylation in five representative Arabidopsis organs with 2 ~ 3 biological replicates per organ. A total of 2887 Kac proteins and 5929 Kac sites were identified. This comprehensive catalog allows us to analyze proteome-wide features of lysine acetylation. We found that Kac proteins tend to be more uniformly expressed in different organs, and the acetylation status exhibits little correlation with the gene expression level, indicating that acetylation is unlikely caused by stochastic processes. Kac preferentially targets evolutionarily conserved proteins and lysine residues, but only a small percentage of Kac proteins are orthologous between rat and Arabidopsis. A large portion of Kac proteins overlap with proteins modified by other PTMs including ubiquitination, SUMOylation and phosphorylation. Although acetylation, ubiquitination and SUMOylation all modify lysine residues, our analyses show that they rarely target the same sites. In addition, we found that “reader” proteins for acetylation and phosphorylation, i.e., bromodomain-containing proteins and GRF (General Regulatory Factor)/14-3-3 proteins, are intensively modified by the two PTMs, suggesting that they are main crosstalk nodes between acetylation and phosphorylation signaling. Analyses of GRF6/14-3-3λ reveal that the Kac level of GRF6 is decreased under alkaline stress, suggesting that acetylation represses plant alkaline response. Indeed, K56ac of GRF6 inhibits its binding to and subsequent activation of the plasma membrane H+-ATPase AHA2, leading to hypersensitivity to alkaline stress. These results provide valuable resources for protein acetylation studies in plants and reveal that protein acetylation suppresses phosphorylation output by acetylating GRF/14-3-3 proteins.

Cite

CITATION STYLE

APA

Guo, J., Chai, X., Mei, Y., Du, J., Du, H., Shi, H., … Zhang, H. (2022). Acetylproteomics analyses reveal critical features of lysine-ε-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response. Stress Biology, 2(1). https://doi.org/10.1007/s44154-021-00024-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free