Scalable extraction of big macromolecular data in azure data lake environment

7Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

Calculation of structural features of proteins, nucleic acids, and nucleic acid-protein complexes on the basis of their geometries and studying various interactions within these macromolecules, for which high-resolution structures are stored in Protein Data Bank (PDB), require parsing and extraction of suitable data stored in text files. To perform these operations on large scale in the face of the growing amount of macromolecular data in public repositories, we propose to perform them in the distributed environment of Azure Data Lake and scale the calculations on the Cloud. In this paper, we present dedicated data extractors for PDB files that can be used in various types of calculations performed over protein and nucleic acids structures in the Azure Data Lake. Results of our tests show that the Cloud storage space occupied by the macromolecular data can be successfully reduced by using compression of PDB files without significant loss of data processing efficiency. Moreover, our experiments show that the performed calculations can be significantly accelerated when using large sequential files for storing macromolecular data and by parallelizing the calculations and data extractions that precede them. Finally, the paper shows how all the calculations can be performed in a declarative way in U-SQL scripts for Data Lake Analytics.

Cite

CITATION STYLE

APA

Mrozek, D., Dabek, T., & Małysiak-Mrozek, B. (2019). Scalable extraction of big macromolecular data in azure data lake environment. Molecules, 24(1). https://doi.org/10.3390/molecules24010179

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free