Combining mass spectrometry and machine learning to discover bioactive peptides

23Citations
Citations of this article
66Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degradation products of endogenous proteins and peptides, presenting a needle-in-a-haystack problem of identifying the most promising candidate peptides from large-scale peptidomics experiments to test for bioactivity. To address this challenge, we conducted a comprehensive analysis of the mammalian peptidome across seven tissues in four different mouse strains and used the data to train a machine learning model that predicts hundreds of peptide candidates based on patterns in the mass spectrometry data. We provide in silico validation examples and experimental confirmation of bioactivity for two peptides, demonstrating the utility of this resource for discovering lead peptides for further characterization and therapeutic development.

Cite

CITATION STYLE

APA

Madsen, C. T., Refsgaard, J. C., Teufel, F. G., Kjærulff, S. K., Wang, Z., Meng, G., … de Lichtenberg, U. (2022). Combining mass spectrometry and machine learning to discover bioactive peptides. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-34031-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free