Surfactant-Tuned Phase Structure and Morphologies of Cu2ZnSnS4 Hierarchical Microstructures and Their Visible-Light Photocatalytic Activities

30Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cu2ZnSnS4 (CZTS) hierarchical microstructures were synthesized by using a facile and nontoxic hydrothermal route, which were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), Raman spectra, and UV–Vis absorption spectra. The results and analysis show that surfactants used in the hydrothermal process have significant effect on the phase structures, morphologies, and photocatalytic activities of CZTS powders. Especially, the well-crystallized and pure kesterite CZTS hierarchical microstructures were synthesized with the addition of high-concentration tartaric acid (TA) in the hydrothermal process. A nucleation–dissolution–recrystallization mechanism was discussed, and the photocatalytic activities of CZTS hierarchical microstructures for the degradation of rhodamine B (RhB) were also evaluated. We argue that the crystalline structure and particle morphology have played key roles on the photocatalytic properties of CZTS crystals. A considerably high photocatalytic efficiency of 51.66% after 4 h irradiation was obtained in pure kesterite CZTS hierarchical microstructures, which suggests that CZTS would be a promising candidate of photocatalyst.

Cite

CITATION STYLE

APA

Guo, Y., Wei, J., Liu, Y., Yang, T., & Xu, Z. (2017). Surfactant-Tuned Phase Structure and Morphologies of Cu2ZnSnS4 Hierarchical Microstructures and Their Visible-Light Photocatalytic Activities. Nanoscale Research Letters, 12(1). https://doi.org/10.1186/s11671-017-1868-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free