Cytosine and adenine base editors (CBEs and ABEs) are promising new tools for achieving the precise genetic changes required for disease treatment and trait improvement. However, genome-wide and unbiased analyses of their off-target effects in vivo are still lacking. Our whole-genome sequencing analysis of rice plants treated with the third-generation base editor (BE3), high-fidelity BE3 (HF1-BE3), or ABE revealed that BE3 and HF1-BE3, but not ABE, induce substantial genome-wide off-target mutations, which are mostly the C→T type of single-nucleotide variants (SNVs) and appear to be enriched in genic regions. Notably, treatment of rice with BE3 or HF1-BE3 in the absence of single-guide RNA also results in the rise of genome-wide SNVs. Thus, the base-editing unit of BE3 or HF1-BE3 needs to be optimized in order to attain high fidelity.
CITATION STYLE
Jin, S., Zong, Y., Gao, Q., Zhu, Z., Wang, Y., Qin, P., … Gao, C. (2019). Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 364(6437), 292–295. https://doi.org/10.1126/science.aaw7166
Mendeley helps you to discover research relevant for your work.