Predicting psychological state among chinese undergraduate students in the covid-19 epidemic: A longitudinal study using a machine learning

56Citations
Citations of this article
205Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The outbreak of the 2019 novel coronavirus disease (COVID-19) not only caused physical abnormalities, but also caused psychological distress, especially for undergraduate students who are facing the pressure of academic study and work. We aimed to explore the prevalence rate of probable anxiety and probable insomnia and to find the risk factors among a longitudinal study of undergraduate students using the approach of machine learning. Methods: The baseline data (T1) were collected from freshmen who underwent psychological evaluation at two months after entering the university. At T2 stage (February 10th to 13th, 2020), we used a convenience cluster sampling to assess psychological state (probable anxiety was assessed by general anxiety disorder-7 and probable insomnia was assessed by insomnia severity index-7) based on a web survey. We integrated information attained at T1 stage to predict probable anxiety and probable insomnia at T2 stage using a machine learning algorithm (XGBoost). Results: Finally, we included 2009 students (response rate: 80.36%). The prevalence rate of probable anxiety and probable insomnia was 12.49% and 16.87%, respectively. The XGBoost algorithm predicted 1954 out of 2009 students (translated into 97.3% accuracy) and 1932 out of 2009 students (translated into 96.2% accuracy) who suffered anxiety and insomnia symptoms, respectively. The most relevant variables in predicting probable anxiety included romantic relationship, suicidal ideation, sleep symptoms, and a history of anxiety symptoms. The most relevant variables in predicting probable insomnia included aggression, psychotic experiences, suicidal ideation, and romantic relationship. Conclusion: Risks for probable anxiety and probable insomnia among undergraduate students can be identified at an individual level by baseline data. Thus, timely psychological intervention for anxiety and insomnia symptoms among undergraduate students is needed considering the above factors.

Cite

CITATION STYLE

APA

Ge, F., Zhang, D., Wu, L., & Mu, H. (2020). Predicting psychological state among chinese undergraduate students in the covid-19 epidemic: A longitudinal study using a machine learning. Neuropsychiatric Disease and Treatment, 16, 2111–2118. https://doi.org/10.2147/NDT.S262004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free