As a typical brittle material, epoxy resin cannot meet its application requirements in specific fields by only considering a single toughening method. In this paper, the effects of carboxyl-terminated polybutylene adipate (CTPBA) and zinc powder on the mechanical properties, adhesion properties, thermodynamic properties and medium resistance of epoxy resin were studied. A silane coupling agent (KH-550) was used to modify zinc powder. It was found that KH-550 could significantly improve the mechanical properties and bonding properties of epoxy resin, and the modification effect of flake zinc powder (f-Zn) was significantly better than that of spherical zinc powder (s-Zn). When the addition amount of f-Zn was 5 phr, the tensile shear strength and peel strength of the composites reached a maximum value of 13.16 MPa and 0.124 kN/m, respectively, which were 15.95% and 55% higher than those without filler. The tensile strength and impact strength reached a maximum value of 43.09 MPa and 7.09 kJ/m2, respectively, which were 40.54% and 91.11% higher than those without filler. This study provides scientific support for the preparation of f-Zn-modified epoxy resin.
CITATION STYLE
Luo, X., Li, Y., Li, S., & Liu, X. (2022). Enhancement of Mechanical Properties and Bonding Properties of Flake-Zinc-Powder-Modified Epoxy Resin Composites. Polymers, 14(23). https://doi.org/10.3390/polym14235323
Mendeley helps you to discover research relevant for your work.