We propose a methodology of planning effective shape shifting and locomotion of large-ensemble modular robots based on a cubic lattice. The modules are divided into two groups: fixed ones, that build a rigid porous frame, and mobile ones, that flow through the frame. Mobile modules which flow out of the structure attach to the frame, advancing its boundary. Conversely, a deficiency of mobile modules in other parts of the boundary is corrected by decomposition of the frame. Inside the structure, appropriate module flow is arranged to transport the modules in a desired direction, which is planned by a special distributed version of a maximum flow search algorithm. The method engages a volume of modules during reconfiguration, which is more efficient than common surface-flow approaches. Also, the proposed interpretation as a flow in porous media with moving boundaries seems particularly suitable for further development of more advanced global reconfiguration scenarios. The theoretical efficiency of the method is assessed, and then partially verified by a series of simulations. The method can be possibly also applied to a wider class of modular robots, not necessarily cubic-lattice-based.
CITATION STYLE
Lengiewicz, J., & Hołobut, P. (2019). Efficient collective shape shifting and locomotion of massively-modular robotic structures. Autonomous Robots, 43(1), 97–122. https://doi.org/10.1007/s10514-018-9709-6
Mendeley helps you to discover research relevant for your work.