The automotive sector’s transition to Battery Electric Vehicles (BEVs) requires extensive deployment of additional charging infrastructure. To determine optimal new locations, planners consider and rate a multitude of factors that influence the charging demand at candidate sites. Researchers have proposed a variety of placement criteria and methods to automate site selection. However, no common set of criteria has emerged. In addition, due to the lack of usage data, the applicability of existing criteria remains unclear. Therefore, the goals of this article are to extract the most relevant factors from literature and to evaluate their ability to characterize charging point usage. First, we review the literature base to collect, analyze, and cluster existing influencing factors and to analyze how they affect charging demand. Second, we conduct a case study using real-life charging station data from Hamburg, Germany. Based on the extracted influencing factors, we identify four clusters within Hamburg’s public charging infrastructure. While the mean performance indicators duration, daily transactions, and connection ratio hardly differ among these clusters, the temporal occupancy curves clearly show distinct charging behavior for each cluster. This work contributes to the state of the art by structuring the diverse landscape of charging station location placement criteria, by deriving a set of measurable influencing factors, and by analyzing their effect on a location’s charging demand, yielding an open source data set of charging point usage.
CITATION STYLE
Adenaw, L., & Krapf, S. (2022). Placing BEV Charging Infrastructure: Influencing Factors, Metrics, and Their Influence on Observed Charger Utilization. World Electric Vehicle Journal, 13(4). https://doi.org/10.3390/wevj13040056
Mendeley helps you to discover research relevant for your work.