The augmented value of using clinical notes in semi-automated surveillance of deep surgical site infections after colorectal surgery

2Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: In patients who underwent colorectal surgery, an existing semi-automated surveillance algorithm based on structured data achieves high sensitivity in detecting deep surgical site infections (SSI), however, generates a significant number of false positives. The inclusion of unstructured, clinical narratives to the algorithm may decrease the number of patients requiring manual chart review. The aim of this study was to investigate the performance of this semi-automated surveillance algorithm augmented with a natural language processing (NLP) component to improve positive predictive value (PPV) and thus workload reduction (WR). Methods: Retrospective, observational cohort study in patients who underwent colorectal surgery from January 1, 2015, through September 30, 2020. NLP was used to detect keyword counts in clinical notes. Several NLP-algorithms were developed with different count input types and classifiers, and added as component to the original semi-automated algorithm. Traditional manual surveillance was compared with the NLP-augmented surveillance algorithms and sensitivity, specificity, PPV and WR were calculated. Results: From the NLP-augmented models, the decision tree models with discretized counts or binary counts had the best performance (sensitivity 95.1% (95%CI 83.5–99.4%), WR 60.9%) and improved PPV and WR by only 2.6% and 3.6%, respectively, compared to the original algorithm. Conclusions: The addition of an NLP component to the existing algorithm had modest effect on WR (decrease of 1.4–12.5%), at the cost of sensitivity. For future implementation it will be a trade-off between optimal case-finding techniques versus practical considerations such as acceptability and availability of resources.

Cite

CITATION STYLE

APA

Verberk, J. D. M., van der Werff, S. D., Weegar, R., Henriksson, A., Richir, M. C., Buchli, C., … Nauclér, P. (2023). The augmented value of using clinical notes in semi-automated surveillance of deep surgical site infections after colorectal surgery. Antimicrobial Resistance and Infection Control, 12(1). https://doi.org/10.1186/s13756-023-01316-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free