Background: Previous studies have identified the behavioral responses of Aedes aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant chemical actions will, however, require full knowledge of variables that influence vector resting behavior and how untreated "safe sites" contribute to overall impact. Methods: Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU) were evaluated against two material types (cotton and polyester) at various dark:light surface area coverage (SAC) ratio and contrast configuration (horizontal and vertical) under chemical-free and treated conditions. Chemicals evaluated were alphacypermethrin and DDT at varying concentrations. Results: Under chemical-free conditions, dark material had significantly higher resting counts compared to light material at all SAC, and significantly increased when material was in horizontal configuration. Cotton elicited stronger response than polyester. Within the treatment assays, significantly higher resting counts were observed on chemical-treated dark material compared to untreated light fabric. However, compared to matched controls, significantly less resting observations were made on chemical-treated dark material overall. Most importantly, resting observations on untreated light material (or "safe sites") in the treatment assay did not significantly increase for many of the tests, even at 25% SAC. Knockdown rates were ≤5% for all assays. Significantly more observations of flying mosquitoes were made in test assays under chemical-treatment conditions as compared to controls. Conclusions/Significance: When preferred Ae. aegypti resting sites are treated with chemicals, even at reduced treatment coverage area, mosquitoes do not simply move to safe sites (untreated areas) following contact with the treated material. Instead, they become agitated, using increased flight as a proxy indicator. It is this contact irritant response that may elicit escape behavior from a treated space and is a focus of exploitation for reducing man-vector contact inside homes.
CITATION STYLE
Manda, H., Arce, L. M., Foggie, T., Shah, P., Grieco, J. P., & Achee, N. L. (2011). Effects of irritant chemicals on aedes aegypti resting behavior: Is there a simple shift to untreated “safe sites”? PLoS Neglected Tropical Diseases, 5(7). https://doi.org/10.1371/journal.pntd.0001243
Mendeley helps you to discover research relevant for your work.