An enhanced K-nearest neighbor predictive model through metaheuristic optimization

6Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The k-nearest neighbor (KNN) algorithm is vulnerable to noise, which is rooted in the dataset and has negative effects on its accuracy. Hence, various researchers employ variable minimization techniques before predicting the KNN in the quest so as to improve its predictive capability. The genetic algorithm (GA) is the most widely used metaheuristics for such purpose; however, the GA suffers a problem that its mating scheme is bounded on its crossover operator. Thus, the use of the novel inversed bi-segmented average crossover (IBAX) is observed. In the present work, the crossover improved genetic algorithm (CIGAL) is instrumental in the enhancement of KNN's prediction accuracy. The use of the unmodified genetic algorithm has removed 13 variables, while the CIGAL then further removes 20 variables from the 30 total variables in the faculty evaluation dataset. Consequently, the integration of the CIGAL to the KNN (CIGAL-KNN) prediction model improves the KNN prediction accuracy to 95.53%. In contrast to the model of having the unmodified genetic algorithm (GA-KNN), the use of the lone KNN algorithmand the prediction accuracy is only at 89.94% and 87.15%, respectively. To validate the accuracy of the models, the use of the 10-folds cross-validation technique reveals 93.13%, 89.27%, and 87.77% prediction accuracy of the CIGAL-KNN, GA-KNN, and KNN prediction models, respectively. As the result, the CIGAL carried out an optimized GA performance and increased the accuracy of the KNN algorithm as a prediction model.

Cite

CITATION STYLE

APA

Delima, A. J. P. (2020). An enhanced K-nearest neighbor predictive model through metaheuristic optimization. International Journal of Engineering and Technology Innovation, 10(4), 280–292. https://doi.org/10.46604/ijeti.2020.4646

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free