A spacer protein in the Saccharomyces cerevisiae spindle pole body whose transcript is cell cycle-regulated

147Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Monoclonal antibodies against the 110-kD component of the yeast spindle pole body (SPB) were used to clone the corresponding gene SPC110. SPC110 is identical to NUF1 (Mirzayan, C., C. S. Copeland, and M. Snyder. 1992. J. Cell Biol. 116:1319-1332). SPC110/NUF1 has an MluI cell cycle box consensus sequence in its putative promoter region, and we found that the transcript was cell cycle regulated in a similar way to other MluI-regulated transcripts. Spe110p/Nuf1p has a long central region with a predicted coiled-coil structure. We expressed this region in Escherichia coli and showed by rotary shadowing that rods of the predicted length were present. The 110-kD component is localized in the SPB to the gap between the central plaque and the sealed ends of the nuclear microtubules near the inner plaque (Rout, M., and J. V. Kilmartin. 1990. J. Cell Biol. 111:1913-1927). We found that rodlike structures bridge this gap. When truncations of SPC110 with deletions in the coiled-coil region of the protein replaced the wild-type gene, the gap between the central plaque and the ends of the microtubules decreased in proportion to the size of the deletion. This suggests that Spc110p connects these two parts of the SPB together and that the coiled-coil domain acts as a spacer element.

Cite

CITATION STYLE

APA

Kilmartin, J. V., Dyos, S. L., Kershaw, D., & Finch, J. T. (1993). A spacer protein in the Saccharomyces cerevisiae spindle pole body whose transcript is cell cycle-regulated. Journal of Cell Biology, 123(5), 1175–1184. https://doi.org/10.1083/jcb.123.5.1175

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free