Reevaluation of NOD/SCID Mice as NK Cell-Deficient Models

N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objective. Natural killer (NK) cell-deficient mice are useful models in biomedical research. NOD/SCID mice have been used as a model of this type in research. However, the actual status of NK cells in NOD/SCID mice and CB17/SCID mice in comparison with that in BALB/c mice has not been sufficiently evaluated. Methods. Splenocytes from naïve or poly(I:C)-treated mice were isolated for phenotyping and analysis of cytotoxicity-related molecules and inhibitory receptors; for cytotoxicity assay, purified NK cells were also used. Results. The proportion of splenic NK cells did not differ significantly between NOD/SCID and CB17/SCID mice. The perforin levels in NK cells were similar between the poly(I:C)-treated CB17/SCID and NOD/SCID mice, while the granzyme B and NKG2A/C/E levels in NK cells from NOD/SCID mice were significantly lower than those from CB17/SCID mice. Moreover, the NKG2D and Ly49A levels in NK cells from NOD/SCID mice were higher than those from CB17/SCID. The splenocytes from CB17/SCID mice showed higher cytotoxicity than those from NOD/SCID mice, while the cytotoxicity of purified NK cells basically did not differ between the two strains. After in vitro stimulation with cytokines, the splenocytes from CB17/SCID mice showed higher IFN-γ production than those from NOD/SCID mice; however, NK cells did not. Conclusion. There was no significant difference in the proportion of splenic NK cells between CB17/SCID and NOD/SCID mice, and the function of NK cells was only partially compromised in NOD/SCID mice. Caution should be taken when considering the use of NOD/SCID mice as an NK-deficient model.

Cite

CITATION STYLE

APA

Miao, M., Masengere, H., Yu, G., & Shan, F. (2021). Reevaluation of NOD/SCID Mice as NK Cell-Deficient Models. BioMed Research International, 2021. https://doi.org/10.1155/2021/8851986

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free