The use of Bayesian priors in Ecology: The good, the bad and the not great

68Citations
Citations of this article
243Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Bayesian data analysis (BDA) is a powerful tool for making inference from ecological data, but its full potential has yet to be realized. Despite a generally positive trajectory in research surrounding model development and assessment, far too little attention has been given to prior specification. Default priors, a sub-class of non-informative prior distributions that are often chosen without critical thought or evaluation, are commonly used in practice. We believe the fear of being too ‘subjective’ has prevented many researchers from using any prior information in their analyses despite the fact that defending prior choice (informative or not) promotes good statistical practice. In this commentary, we provide an overview of how BDA is currently being used in a random sample of articles, discuss implications for inference if current bad practices continue, and highlight sub-fields where knowledge about the system has improved inference and promoted good statistical practices through the careful and justified use of informative priors. We hope to inspire a renewed discussion about the use of Bayesian priors in Ecology with particular attention paid to specification and justification. We also emphasize that all priors are the result of a subjective choice, and should be discussed in that way.

Cite

CITATION STYLE

APA

Banner, K. M., Irvine, K. M., & Rodhouse, T. J. (2020, August 1). The use of Bayesian priors in Ecology: The good, the bad and the not great. Methods in Ecology and Evolution. British Ecological Society. https://doi.org/10.1111/2041-210X.13407

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free