Light-responsive self-strained organic semiconductor for large flexible OFET sensing array

40Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

With the wide application of organic semiconductors (OSCs), researchers are now grappling with a new challenge: design and synthesize OSCs materials with specific functions to satisfy the requirements of high-performance semiconductor devices. Strain engineering is an effective method to improve the semiconductor material’s carrier mobility, which is fundamentally originated from the rearrangement of the atomic packing model of materials under mechanic stress. Here, we design and synthesize a new OSC material named AZO-BTBT-8 based on high-mobility benzo[b]benzo[4,5]thieno[2,3-d]thiophene (BTBT) as the semiconductor backbone. Octane is employed to increase molecular flexibility and solubility, and azobenzene at the other end of the BTBT backbone provides photoisomerization properties and structural balance. Notably, the AZO-BTBT-8 photoisomerization leads to lattice strain in thin-film devices, where exceptional device performance enhancement is realized. On this basis, a large-scale flexible organic field-effect transistor (OFET) device array is fabricated and realizes high-resolution UV imaging with reversible light response.

Cite

CITATION STYLE

APA

Li, M., Zheng, J., Wang, X., Yu, R., Wang, Y., Qiu, Y., … Tang, J. (2022). Light-responsive self-strained organic semiconductor for large flexible OFET sensing array. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-32647-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free