The heat resistance of a four-strain mixture of Escherichia coli O157:H7 in raw ground beef in both the absence and presence of the antimicrobials carvacrol and cinnamaldehyde was tested at temperatures ranging from 55 to 62.5°C. Inoculated meat packaged in bags was completely immersed in a circulating water bath, cooked for 1 h to an internal temperature of 55, 58, 60, or 62.5°C, and then held for predetermined lengths of time ranging from 210 min at 55°C to 5 min at 62.5°C. The surviving bacteria were enumerated by spiral plating onto tryptic soy agar overlaid with sorbitol MacConkey agar. Inactivation kinetics of the pathogens deviated from first-order kinetics. D-values (time for the bacteria to decrease by 90%) in the control beef ranged from 63.90 min at 55°C to 1.79 min at 62.5°C. D-values determined by a logistic model ranged from 43.18 min (D1, the D-value of a major population of surviving cells) and 89.84 min (D2, the D-value of a minor subpopulation) at 55°C to 1.77 (D1) and 0.78 min (D 2) at 62.5°C. The thermal death times suggested that to achieve a 4-D reduction, contaminated processed ground beef should be heated to an internal temperature of 60°C for at least 30.32 min. Significantly increased sensitivity to heat (P < 0.05) was observed with the addition and/or increasing levels of carvacrol or cinnamaldehyde from 0.5 to 1.0%. The observed thermal death times may facilitate the design of acceptance limits at critical control points for ground beef at lower times and temperatures of heating.
CITATION STYLE
Juneja, V. K., & Friedman, M. (2008). Carvacrol and cinnamaldehyde facilitate thermal destruction of Escherichia coli O157:H7 in raw ground beef. Journal of Food Protection, 71(8), 1604–1611. https://doi.org/10.4315/0362-028X-71.8.1604
Mendeley helps you to discover research relevant for your work.