Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information

2.9kCitations
Citations of this article
678Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper presents a new computer method for folding an RNA molecule that finds a conformation of minimum free energy using published values of stacking and destabilizing energies. It is based on a dynamic programming algorithm from applied mathematics, and is much more efficient, faster, and can fold larger molecules than procedures which have appeared up to now in the biological literature. Its power is demonstrated in the folding of a 459 nucleotide immunoglobulin γ 1 heavy chain messenger RNA fragment. We go beyond the basic method to show how to incorporate additional information into the algorithm. This includes data on chemical reactivity and enzyme susceptibility. We illustrate this with the folding of two large fragments from the 16S ribosomal RNA of Escherichia coli. © 1981 IRL Press Limited.

Cite

CITATION STYLE

APA

Zuker, M., & Stiegler, P. (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research, 9(1), 133–148. https://doi.org/10.1093/nar/9.1.133

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free