Global environmental changes not only contribute to the modification of global pollution transport pathways but can also alter contaminant fate within the Arctic. Recent reports underline the importance of secondary sources of pollution, e.g. melting glaciers, thawing permafrost or increased riverine run-off. This article reviews reports on the European Arctic–we concentrate on the Svalbard region–and environmental contamination by inorganic pollutants (heavy metals and artificial radionuclides), including their transport pathways, their fate in the Arctic environment and the concentrations of individual elements in the ecosystem. This review presents in detail the secondary contaminant sources and tries to identify knowledge gaps, as well as indicate needs for further research. Concentrations of heavy metals and radionuclides in Svalbard have been studied, in various environmental elements since the beginning of the twentieth century. In the last 5 years, the highest concentrations of Cd (13 mg kg−1) and As (28 mg kg−1) were recorded for organic-rich soils, while levels of Pb (99 mg kg−1), Hg (1 mg kg−1), Zn (496 mg kg−1) and Cu (688 mg kg−1) were recorded for marine sediments. Increased heavy metal concentrations were also recorded in some flora and fauna species. For radionuclides in the last 5 years, the highest concentrations of 137Cs (4500 Bq kg−1), 238Pu (2 Bq kg−1) and 239 + 240Pu (43 Bq kg−1) were recorded for cryoconites, and the highest concentration of 241Am (570 Bq kg−1) was recorded in surface sediments. However, no contamination of flora and fauna with radionuclides was observed.
CITATION STYLE
Rudnicka-Kępa, P., & Zaborska, A. (2021, November 1). Sources, fate and distribution of inorganic contaminants in the Svalbard area, representative of a typical Arctic critical environment–a review. Environmental Monitoring and Assessment. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10661-021-09305-6
Mendeley helps you to discover research relevant for your work.