Despite major advances in the β-lactamase inhibitor field, certain enzymes remain refractory to inhibition by agents recently introduced. Most important among these are the class B (metallo) enzyme NDM-1 of Enterobacteriaceae and the class D (OXA) enzymes of Acinetobacter baumannii. Continuing the boronic acid program that led to vaborbactam, efforts were directed toward expanding the spectrum to allow treatment of a wider range of organisms. Through key structural modifications of a bicyclic lead, stepwise gains in spectrum of inhibition were achieved, ultimately resulting in QPX7728 (35). This compound displays a remarkably broad spectrum of inhibition, including class B and class D enzymes, and is little affected by porin modifications and efflux. Compound 35 is a promising agent for use in combination with a β-lactam antibiotic for the treatment of a wide range of multidrug resistant Gram-negative bacterial infections, by both intravenous and oral administration.
CITATION STYLE
Hecker, S. J., Reddy, K. R., Lomovskaya, O., Griffith, D. C., Rubio-Aparicio, D., Nelson, K., … Dudley, M. N. (2020). Discovery of Cyclic Boronic Acid QPX7728, an Ultrabroad-Spectrum Inhibitor of Serine and Metallo-β-lactamases. Journal of Medicinal Chemistry, 63(14), 7491–7507. https://doi.org/10.1021/acs.jmedchem.9b01976
Mendeley helps you to discover research relevant for your work.