Reaction factoring and bipartite update graphs accelerate the gillespie algorithm for large-scale biochemical systems

19Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

ODE simulations of chemical systems perform poorly when some of the species have extremely low concentrations. Stochastic simulation methods, which can handle this case, have been impractical for large systems due to computational complexity. We observe, however, that when modeling complex biological systems: (1) a small number of reactions tend to occur a disproportionately large percentage of the time, and (2) a small number of species tend to participate in a disproportionately large percentage of reactions. We exploit these properties in LOLCAT Method, a new implementation of the Gillespie Algorithm. First, factoring reaction propensities allows many propensities dependent on a single species to be updated in a single operation. Second, representing dependencies between reactions with a bipartite graph of reactions and species requires only O(n) storage for n reactions, rather than the O(n2) required for a graph that includes only reactions. Together, these improvements allow our implementation of LOLCAT Method to execute orders of magnitude faster than currently existing Gillespie Algorithm variants when simulating several yeast MAPK cascade models. © 2010 Indurkhya, Beal.

Cite

CITATION STYLE

APA

Indurkhya, S., & Beal, J. (2010). Reaction factoring and bipartite update graphs accelerate the gillespie algorithm for large-scale biochemical systems. PLoS ONE, 5(1). https://doi.org/10.1371/journal.pone.0008125

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free