A Proterozoic microbial origin of extant cyanide-hydrolyzing enzyme diversity

1Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In addition to its role as a toxic environmental contaminant, cyanide has been hypothesized to play a key role in prebiotic chemistry and early biogeochemical evolution. While cyanide-hydrolyzing enzymes have been studied and engineered for bioremediation, the extant diversity of these enzymes remains underexplored. Additionally, the age and evolution of microbial cyanide metabolisms is poorly constrained. Here we provide comprehensive phylogenetic and molecular clock analyses of the distribution and evolution of the Class I nitrilases, thiocyanate hydrolases, and nitrile hydratases. Molecular clock analyses indicate that bacterial cyanide-reducing nitrilases were present by the Paleo- to Mesoproterozoic, and were subsequently horizontally transferred into eukaryotes. These results present a broad diversity of microbial enzymes that could be optimized for cyanide bioremediation.

Cite

CITATION STYLE

APA

Schwartz, S. L., Rangel, L. T., Payette, J. G., & Fournier, G. P. (2023). A Proterozoic microbial origin of extant cyanide-hydrolyzing enzyme diversity. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1130310

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free