The performance of random forests in an operational setting for large area sclerophyll forest classification

148Citations
Citations of this article
212Readers
Mendeley users who have this article in their library.

Abstract

Mapping and monitoring forest extent is a common requirement of regional forest inventories and public land natural resource management, including in Australia. The state of Victoria, Australia, has approximately 7.2 million hectares of mostly forested public land, comprising ecosystems that present a diverse range of forest structures, composition and condition. In this paper, we evaluate the performance of the Random Forest (RF) classifier, an ensemble learning algorithm that has recently shown promise using multi-spectral satellite sensor imagery for large area feature classification. The RF algorithm was applied using selected Landsat Thematic Mapper (TM) imagery metrics and auxiliary terrain and climatic variables, while the reference data was manually extracted from systematically distributed plots of sample aerial photography and used for training (75%) and accuracy (25%) assessment. The RF algorithm yielded an overall accuracy of 96% and a Kappa statistic of 0.91 (confidence interval (CI) 0.909-0.919) for the forest/non-forest classification model, given a Kappa maximised binary threshold value of 0.5. The area under the receiver operating characteristic plot produced a score of 0.91, also indicating high model performance. The framework described in this study contributes to the operational deployment of a robust, but affordable, program, able to collate and process large volumes of multi-sourced data using open-source software for the production of consistent and accurate forest cover maps across the full spectrum of Victorian sclerophyll forest types. © 2013 by the authors.

Cite

CITATION STYLE

APA

Mellor, A., Haywood, A., Stone, C., & Jones, S. (2013). The performance of random forests in an operational setting for large area sclerophyll forest classification. Remote Sensing, 5(6), 2838–2856. https://doi.org/10.3390/rs5062838

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free