Many animal species across taxa spontaneously form aggregations that exhibit collective behaviour. In the wild, these collective systems are unavoidably influenced by ubiquitous environmental perturbations such as wind gusts, acoustic and visual stimuli, or the presence of predators or other animals. The way these environmental perturbations influence the animals' collective behaviour, however, is poorly understood, in part because conducting controlled quantitative perturbation experiments in natural settings is challenging. To circumvent the need for controlling environmental conditions in the field, we study swarming midges in a laboratory experiment where we have full control over external perturbations. Here, we consider the effect of controlled variable light exposure on the swarming behaviour. We find that not only do individuals in the swarm respond to light changes by speeding up during brighter conditions but also the swarm as a whole responds to these perturbations by compressing and simultaneously increasing the attraction of individual midges to its centre of mass. The swarm-level response can be described by making an analogy to classical thermodynamics, with the state of the swarm moving along an isotherm in a thermodynamic phase plane.
CITATION STYLE
Sinhuber, M., Van Der Vaart, K., & Ouellette, N. T. (2019). Response of insect swarms to dynamic illumination perturbations. Journal of the Royal Society Interface, 16(150). https://doi.org/10.1098/rsif.2018.0739
Mendeley helps you to discover research relevant for your work.