A strain harbouring an insertion within the promoter of the CON7 gene of Magnaporthe grisea was isolated. This gene was previously shown to be essential for appressorium formation and growth in planta and is predicted to encode a transcription factor. Microarray-based gene expression analysis was used to identify several genes whose transcription during germination depends on Con7p. These include the pathogenicity factor-encoding gene PTH11 and several other genes which like PTH11 are predicted to encode G protein-coupled receptors. Microarray analysis also revealed several Con7p-dependent genes which may encode factors determining cell wall structure or function, either through the synthesis/degradation of cell wall components or by association with the cell exterior. One Con7p-dependent gene predicted to encode a class VII chitin synthase was deleted, leading to dramatic consequences on the pathogenic development of the resultant strain. Within the con7- mutant, a 29% reduction in chitin content of germinated spores was found and the mutant was hypersensitive to the chitin synthase inhibitor nikkomycin Z. A green fluorescent protein-tagged Con7p was found to have nuclear localization within spores. Taken together, these observations suggest that Con7p encodes a transcription factor required for the transcription of several genes which participate in disease-related morphogenesis in M. grisea. © 2007 The Authors.
CITATION STYLE
Odenbach, D., Breth, B., Thines, E., Weber, R. W. S., Anke, H., & Foster, A. J. (2007). The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Molecular Microbiology, 64(2), 293–307. https://doi.org/10.1111/j.1365-2958.2007.05643.x
Mendeley helps you to discover research relevant for your work.