Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere

189Citations
Citations of this article
353Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The past decade has seen an exceptional number of unprecedented summer extreme weather events in northern mid-latitudes, along with record declines in both summer Arctic sea ice and snow cover on high-latitude land. The underlying mechanisms that link the shrinking cryosphere with summer extreme weather, however, remain unclear. Here, we combine satellite observations of early summer snow cover and summer sea-ice extent with atmospheric reanalysis data to demonstrate associations between summer weather patterns in mid-latitudes and losses of snow and sea ice. Results suggest that the atmospheric circulation responds differently to changes in the ice and snow extents, with a stronger response to sea-ice loss, even though its reduction is half as large as that for the snow cover. Atmospheric changes associated with the combined snow/ice reductions reveal widespread upper-level height increases, weaker upper-level zonal winds at high latitudes, a more amplified upper-level pattern, and a general northward shift in the jet stream. More frequent extreme summer heat events over mid-latitude continents are linked with reduced sea ice and snow through these circulation changes. © 2014 Macmillan Publishers Limited. All rights reserved.

Cite

CITATION STYLE

APA

Tang, Q., Zhang, X., & Francis, J. A. (2014). Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nature Climate Change, 4(1), 45–50. https://doi.org/10.1038/nclimate2065

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free