The ErbB network is dysregulated in many solid tumors. To exploit this, we have developed a chimeric Ag receptor (CAR) named T1E28z that targets several pathogenetically relevant ErbB dimers. T1E28z is coexpressed with a chimeric cytokine receptor named 4αβ (combination termed T4), enabling the selective expansion of engineered T cells using IL-4. Human T4+ T cells exhibit antitumor activity against several ErbB+ cancer types. However, ErbB receptors are also expressed in several healthy tissues, raising concerns about toxic potential. In this study, we have evaluated safety of T4 immunotherapy in vivo using a SCID beige mouse model. We show that the human T1E28z CAR efficiently recognizes mouse ErbB+ cells, rendering this species suitable to evaluate preclinical toxicity. Administration of T4+ T cells using the i.v. or intratumoral routes achieves partial tumor regression without clinical or histopathologic toxicity. In contrast, when delivered i.p., tumor reduction is accompanied by dose-dependent side effects. Toxicity mediated by T4+ T cells results from target recognition in both tumor and healthy tissues, leading to release of both human (IL-2/IFN-γ) and murine (IL-6) cytokines. In extreme cases, outcome is lethal. Both toxicity and IL-6 release can be ameliorated by prior macrophage depletion, consistent with clinical data that implicate IL-6 in this pathogenic event. These data demonstrate that CAR-induced cytokine release syndrome can be modeled in mice that express target Ag in an appropriate distribution. Furthermore, our findings argue that ErbB-retargeted T cells can achieve therapeutic benefit in the absence of unacceptable toxicity, providing that route of administration and dose are carefully optimized.
CITATION STYLE
van der Stegen, S. J. C., Davies, D. M., Wilkie, S., Foster, J., Sosabowski, J. K., Burnet, J., … Maher, J. (2013). Preclinical In Vivo Modeling of Cytokine Release Syndrome Induced by ErbB-Retargeted Human T Cells: Identifying a Window of Therapeutic Opportunity? The Journal of Immunology, 191(9), 4589–4598. https://doi.org/10.4049/jimmunol.1301523
Mendeley helps you to discover research relevant for your work.