Improved performance and consistency of deep learning 3D liver segmentation with heterogeneous cancer stages in magnetic resonance imaging

7Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Purpose Accurate liver segmentation is key for volumetry assessment to guide treatment decisions. Moreover, it is an important pre-processing step for cancer detection algorithms. Liver segmentation can be especially challenging in patients with cancer-related tissue changes and shape deformation. The aim of this study was to assess the ability of state-of-the-art deep learning 3D liver segmentation algorithms to generalize across all different Barcelona Clinic Liver Cancer (BCLC) liver cancer stages. Methods This retrospective study, included patients from an institutional database that had arterialphase T1-weighted magnetic resonance images with corresponding manual liver segmentations. The data was split into 70/15/15% for training/validation/testing each proportionally equal across BCLC stages. Two 3D convolutional neural networks were trained using identical U-net-derived architectures with equal sized training datasets: One spanning all BCLC stages ("All-Stage-Net": AS-Net), and one limited to early and intermediate BCLC stages ("Early-Intermediate-Stage-Net": EIS-Net). Segmentation accuracy was evaluated by the Dice Similarity Coefficient (DSC) on a dataset spanning all BCLC stages and a Wilcoxon signed-rank test was used for pairwise comparisons. Results 219 subjects met the inclusion criteria (170 males, 49 females, 62.8±9.1 years) from all BCLC stages. Both networks were trained using 129 subjects: AS-Net training comprised 19, 74, 18, 8, and 10 BCLC 0, A, B, C, and D patients, respectively; EIS-Net training comprised 21, 86, and 22 BCLC 0, A, and B patients, respectively. DSCs (mean±SD) were 0.954±0.018 and 0.946±0.032 for AS-Net and EIS-Net (p<0.001), respectively. The AS-Net 0.956±0.014 significantly outperformed the EIS-Net 0.941±0.038 on advanced BCLC stages (p<0.001) and yielded similarly good segmentation performance on early and intermediate stages (AS-Net: 0.952±0.021; EIS-Net: 0.949±0.027; p = 0.107). Conclusion To ensure robust segmentation performance across cancer stages that is independent of liver shape deformation and tumor burden, it is critical to train deep learning models on heterogeneous imaging data spanning all BCLC stages.

Cite

CITATION STYLE

APA

Gross, M., Spektor, M., Jaffe, A., Kucukkaya, A. S., Iseke, S., Haider, S. P., … Onofrey, J. A. (2021). Improved performance and consistency of deep learning 3D liver segmentation with heterogeneous cancer stages in magnetic resonance imaging. PLoS ONE, 16(12 December). https://doi.org/10.1371/journal.pone.0260630

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free