A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat

248Citations
Citations of this article
149Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Durum wheat (Triticum turgidum subsp. durum) is more salt sensitive than bread wheat (Triticum aestivum). A novel source of Na+ exclusion conferring salt tolerance to durum wheat is present in the durum wheat Line 149 derived from Triticum monococcum C68-101, and a quantitative trait locus contributing to low Na+ concentration in leaf blades, Nax1, mapped to chromosome 2AL. In this study, we used the rice (Oryza sativa) genome sequence and data from the wheat expressed sequence tag deletion bin mapping project to identify markers and construct a high-resolution map of the Nax1 region. Genes on wheat chromosome 2AL and rice chromosome 4L had good overall colinearity, but there was an inversion of a chromosomal segment that includes the Nax1 locus. Two putative sodium transporter genes (TmHKT7) related to OsHKT7 were mapped to chromosome 2AL. One TmHKT7 member (TmHKT7-A1) was polymorphic between the salt-tolerant and -sensitive lines, and cosegregated with Nax1 in the high-resolution mapping family. The other TmHKT7 member (TmHKT7-A2) was located within the same bacterial artificial chromosome contig of approximately 145 kb as TmHKT7-A1. TmHKT7-A1 and -A2 showed 83% amino acid identity. TmHKT7-A2, but not TmHKT7-A1, was expressed in roots and leaf sheaths of the salt-tolerant durum wheat Line 149. The expression pattern of TmHKT7-A2 was consistent with the physiological role of Nax1 in reducing Na+ concentration in leaf blades by retaining Na+ in the sheaths. TmHKT7-A2 could control Na+ unloading from xylem in roots and sheaths. © 2006 American Society of Plant Biologists.

Cite

CITATION STYLE

APA

Huang, S., Spielmeyer, W., Lagudah, E. S., James, R. A., Platten, J. D., Dennis, E. S., & Munns, R. (2006). A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiology, 142(4), 1718–1727. https://doi.org/10.1104/pp.106.088864

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free