Calix[4]arene Derivative-Modified Glassy Carbon Electrode: A New Sensing Platform for Rapid, Simultaneous, and Picomolar Detection of Zn(II), Pb(II), As(III), and Hg(II)

20Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The glassy carbon electrode was fabricated with multifunctional bis-triazole-appended calix[4]arene and then used for the simultaneous detection of Zn(II), Pb(II), As(III), and Hg(II). Before applying the square-wave anodic stripping voltammetry, the sensitivity and precision of the modified electrode was assured by optimizing various conditions such as the modifier concentration, pH of the solution, deposition potential, accumulation time, and supporting electrolytes. The modified glassy carbon electrode was found to be responsive up to picomolar limits for the aforementioned heavy metal ions, which is a concentration limit much lower than the threshold level permitted by the World Health Organization. Importantly, the designed sensing platform showed anti-interference ability, good stability, repeatability, reproducibility, and applicability for the detection of multiple metal ions. The detection limits obtained for Zn(II), Pb(II), As(III), and Hg(II) are 66.3, 14.6, 71.9, and 28.9 pM, respectively.

Cite

CITATION STYLE

APA

Sultan, S., Shah, A., Khan, B., Nisar, J., Shah, M. R., Ashiq, M. N., … Shah, A. H. (2019). Calix[4]arene Derivative-Modified Glassy Carbon Electrode: A New Sensing Platform for Rapid, Simultaneous, and Picomolar Detection of Zn(II), Pb(II), As(III), and Hg(II). ACS Omega, 4(16), 16860–16866. https://doi.org/10.1021/acsomega.9b01869

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free