This work investigates the non-catalyzed supercritical methanol (SCM) process for continuous biodiesel production. The lab-scale setup was designed and used for biodiesel production in the temperature range of 520–650 K and 83–380 bar with an oil-to-methanol molar ratio ranging from 1:5 to 1:45. The experiments were performed in the coiled plug flow tubular reactor. The volumetric flow rate of the methanol/oil ranged from 0.1–10 mL/min. This work examines a new reactor technology involving preheating and pre-mixing of the methanol/oil mixture to reduce setup cost and increase biodiesel yield under the same reaction conditions. Work performed showed that FAME’s yield increased rapidly with temperature and pressure above the methanol critical points (i.e., 513 K and 79.5 bar). The best methyl-ester yield using this reaction technology was 91% at 590 K temperature and 351 bars with an oil-to-methanol ratio of 39 and a 15-min residence time. Furthermore, the kinetics of the free catalyst transesterification process was studied in supercritical methanol under different reaction conditions.
CITATION STYLE
Hassan, A. A., & Smith, J. D. (2021). Laboratory-scale research of non-catalyzed supercritical alcohol process for continuous biodiesel production. Catalysts, 11(4). https://doi.org/10.3390/catal11040435
Mendeley helps you to discover research relevant for your work.