We report on investigation the potential of a 7 wt% (8.35 × 1020 Tm3+/cm3) doped silicate fibers for high-gain fiber amplifiers. Such a high ion concentration significantly reduces the required fiber length of high-power 2 μm fiber laser systems and allows the high-repetition rate operation in 2 μm mode-locked fiber lasers. To evaluate the feasibility of extracting high gain-per-unit-length from this gain medium, we measure several key material properties of the silicate fiber, including the absorption/emission cross-sections, upper-state lifetime, fiber background loss, and photodarkening resistance. We show through numerical simulations that a signal gain-per-unit-length of 3.78 dB/cm at 1950 nm can be achieved in a watt-level core-pumped Tm3+-doped silicate fiber amplifier. In addition, an 18-dB 2013-nm amplifier is demonstrated in a 50-cm 7 wt% Tm3+-doped double-clad silicate fiber. Finally, we experimentally confirm that the reported silicate host exhibits no observable photodarkening.
CITATION STYLE
Lee, Y. W., Tseng, H. W., Cho, C. H., Chen, J. Z., Chang, J. S., & Jiang, S. (2013). Heavily Tm3+-doped silicate fiber for high-gain fiber amplifiers. Fibers, 1(3), 82–92. https://doi.org/10.3390/fib1030082
Mendeley helps you to discover research relevant for your work.