Application of multivariate statistical methods and artificial neural network for facies analysis from well logs data: An example of Miocene deposits

21Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

The main purpose of the study is a detailed interpretation of the facies and relate these to the results of standard well logs interpretation. Different methods were used: firstly, multivariate statistical methods, like principal components analysis, cluster analysis and discriminant analysis; and secondly, the artificial neural network, to identify and discriminate the facies from well log data. Determination of electrofacies was done in two ways: firstly, analysis was performed for two wells separately, secondly, the neural network learned and trained on data from the W-1 well was applied to the second well W-2 and a prediction of the facies distribution in this well was made. In both wells, located in the area of the Carpathian Foredeep, thin-layered sandstone-claystone formations were found and gas saturated depth intervals were identified. Based on statistical analyses, there were recognized presence of thin layers intersecting layers of much greater thickness (especially in W-2 well), e.g., section consisting mainly of claystone and sandstone formations with poor reservoir parameters (Group B) is divided with thin layers of sandstone and claystone with good reservoir parameters (Group C). The highest probability of occurrence of hydrocarbons exists in thin-layered intervals in facies C.

Cite

CITATION STYLE

APA

Puskarczyk, E. (2020). Application of multivariate statistical methods and artificial neural network for facies analysis from well logs data: An example of Miocene deposits. Energies, 13(7). https://doi.org/10.3390/en13071548

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free