Depression is a highly prevalent and recurrent neuropsychiatric disorder associated with alterations in emotional and cognitive domains. Neuroplastic phenomena are increasingly considered central to the etiopathogenesis of and recovery from depression. Nevertheless, a high number of remitted patients experience recurrent episodes of depression, remaining unclear how previous episodes impact on behavior and neuroplasticity and/or whether modulation of neuroplasticity is important to prevent recurrent depression. Through re-exposure to an unpredictable chronic mild stress protocol in rats, we observed the re-appearance of emotional and cognitive deficits. Furthermore, treatment with the antidepressants fluoxetine and imipramine was effective to promote sustained reversion of a depressive-like phenotype; however, their differential impact on adult hippocampal neuroplasticity triggered a distinct response to stress re-exposure: while imipramine re-established hippocampal neurogenesis and neuronal dendritic arborization contributing to resilience to recurrent depressive-like behavior, stress re-exposure in fluoxetine-treated animals resulted in an overproduction of adult-born neurons along with neuronal atrophy of granule neurons, accounting for an increased susceptibility to recurrent behavioral changes typical of depression. Strikingly, cell proliferation arrest compromised the behavior resilience induced by imipramine and buffered the susceptibility to recurrent behavioral changes promoted by fluoxetine. This study shows that previous exposure to a depressive-like episode impacts on the behavioral and neuroanatomical changes triggered by subsequent re-exposure to similar experimental conditions and reveals that the proper control of adult hippocampal neuroplasticity triggered by antidepressants is essential to counteract recurrent depressive-like episodes.
CITATION STYLE
Alves, N. D., Correia, J. S., Patrício, P., Mateus-Pinheiro, A., Machado-Santos, A. R., Loureiro-Campos, E., … Pinto, L. (2017). Adult hippocampal neuroplasticity triggers susceptibility to recurrent depression. Translational Psychiatry, 7(3). https://doi.org/10.1038/tp.2017.29
Mendeley helps you to discover research relevant for your work.