For thousands of years, the state-of-the-art prosthetics were very primitive. This is not due to lack of effort or expertise. Rather, the technological capabilities of these eras restricted the possible advancements in prosthetics, such that the most effective solutions leaned heavily toward the most basic designs. These historic prosthetics were devices made of wood, metal, and leather, crafted by blacksmiths and tradesmen, which served more as esthetic pieces than functional tools. Technology today has progressed to the point where biomimetic and anthro- pomorphic prosthetics are a reality and are beginning to rival their organic counterparts in form and function. Biomimetics, as coined by Otto Schmitt, is the concept in which an artificial device effectively mimics the structural, functional, and biological properties of the natural entity in which it is modeled after [39]. Alternatively, devices that are anthropomorphic in nature mimic the physical characteristics of the limb including its look and feel, integrating aspects such as a textured skin-like material onto the device. These concepts in prosthetic design are enabled by control systems, actuator designs, sensor and biosignal innovations, biomechanical insights, and battery technology, among others. These advances have also led to wearable robotic exoskeletons, allowing functional assistance for individuals with paralysis whose affected limb remains intact. Properly leveraging these technologies requires one to examine the device qualities desired by the user and learn about recent progress in research and development. In this book, we will discuss these issues in the context of assistive limb prosthetics and recent advances in the field.
CITATION STYLE
Burns, M., Schumacher, M., & Vinjamuri, R. (2018). Introductory Chapter: Toward Near-Natural Assistive Devices. In Biomimetic Prosthetics. InTech. https://doi.org/10.5772/intechopen.73637
Mendeley helps you to discover research relevant for your work.